455 research outputs found

    Computational Feasibility of Increasing the Visibility of Vertices in Covert Networks

    Get PDF
    Disrupting terrorist and other covert networks requires identifying and capturing key leaders. Previous research by Martonosi et al. (2009) defines a load metric on vertices of a covert network representing the amount of communication in which a vertex is expected to participate. They suggest that the visibility of a target vertex can be increased by removing other, more accessible members of the network. This report evaluates the feasibility of efficiently calculating the optimal subset of vertices to remove. We begin by proving that the general problem of identifying the optimally load maximizing vertex set removal is NP-complete. We then consider the feasibility of more quickly computing the load maximizing single vertex removal by designing an efficient algorithm for recomputing Gomory- Hu trees. This leads to a result regarding the uniqueness of Gomory- Hu trees with implications towards the feasibility of one approach for Gomory- Hu tree reconstruction. Finally, we propose a warm start algorithm which performs this reconstruction, and analyze its runtime experimentally

    Reliability measurement for operational avionics software

    Get PDF
    Quantitative measures of reliability for operational software in embedded avionics computer systems are presented. Analysis is carried out on data collected during flight testing and from both static and dynamic simulation testing. Failure rate is found to be a useful statistic for estimating software quality and recognizing reliability trends during the operational phase of software development

    The Cophylogeny Reconstruction Problem is NP-Complete

    Get PDF
    The cophylogeny reconstruction problem arises in the study of host-parasite relationships. Specif- ically, we are given a host tree H, a parasite tree P, and a function \u27 mapping the leaves (extant taxa) of P to the leaves of H. Four biologically plausible operations are considered: cospeciation, duplication, host switching, and loss (Figure 1). A host switch is permitted in conjunction with a duplication event but not with a cospeciation event [1]

    Jane: A New Tool for the Cophylogeny Reconstruction Problem

    Get PDF
    Background This paper describes the theory and implementation of a new software tool, called Jane, for the study of historical associations. This problem arises in parasitology (associations of hosts and parasites), molecular systematics (associations of orderings and genes), and biogeography (associations of regions and orderings). The underlying problem is that of reconciling pairs of trees subject to biologically plausible events and costs associated with these events. Existing software tools for this problem have strengths and limitations, and the new Jane tool described here provides functionality that complements existing tools. Results The Jane software tool uses a polynomial time dynamic programming algorithm in conjunction with a genetic algorithm to find very good, and often optimal, solutions even for relatively large pairs of trees. The tool allows the user to provide rich timing information on both the host and parasite trees. In addition the user can limit host switch distance and specify multiple host switch costs by specifying regions in the host tree and costs for host switches between pairs of regions. Jane also provides a graphical user interface that allows the user to interactively experiment with modifications to the solutions found by the program. Conclusions Jane is shown to be a useful tool for cophylogenetic reconstruction. Its functionality complements existing tools and it is therefore likely to be of use to researchers in the areas of parasitology, molecular systematics, and biogeography

    The impact of ischemic stroke on connectivity gradients

    No full text
    The functional organization of the brain can be represented as a low-dimensional space that reflects its macroscale hierarchy. The dimensions of this space, described as connectivity gradients, capture the similarity of areas' connections along a continuous space. Studying how pathological perturbations with known effects on functional connectivity affect these connectivity gradients provides support for their biological relevance. Previous work has shown that localized lesions cause widespread functional connectivity alterations in structurally intact areas, affecting a network of interconnected regions. By using acute stroke as a model of the effects of focal lesions on the connectome, we apply the connectivity gradient framework to depict how functional reorganization occurs throughout the brain, unrestricted by traditional definitions of functional network boundaries. We define a three-dimensional connectivity space template based on functional connectivity data from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes result in dimension-specific alterations in functional connectivity over the first week after symptom onset. Specifically, changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of functional connectivity change was associated with the distance from the lesion along these connectivity gradients (a measure of functional similarity) regardless of the anatomical distance from the lesion. Together, these results provide support for the biological validity of connectivity gradients and suggest a novel framework to characterize connectivity alterations after stroke

    The role of science in physical natural hazard assessment : report to the UK Government by the Natural Hazard Working Group

    Get PDF
    Following the tragic Asian tsunami on 26 December 2004, the Prime Minister asked the Government’s Chief Scientific Adviser, Sir David King, to convene a group of experts (the Natural Hazard Working Group) to advise on the mechanisms that could and should be established for the detection and early warning of global physical natural hazards. 2. The Group was asked to examine physical hazards which have high global or regional impact and for which an appropriate early warning system could be put in place. It was also asked to consider the global natural hazard frameworks currently in place and under development and their effectiveness in using scientific evidence; to consider whether there is an existing appropriate international body to pull together the international science community to advise governments on the systems that need to be put in place, and to advise on research needed to fill current gaps in knowledge. The Group was asked to make recommendations on whether a new body was needed, or whether other arrangements would be more effective

    A novel approach for assessing hypoperfusion in stroke using spatial independent component analysis of resting‐state fMRI

    Get PDF
    Individualized treatment of acute stroke depends on the timely detection of ischemia and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to characterize cerebral blood flow from blood-oxygen-level-dependent (BOLD) signals without the administration of exogenous contrast agents. In this study, we applied spatial independent component analysis to resting-state fMRI data of 37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received follow-up scans the next day. Our analysis revealed "Hypoperfusion spatially-Independent Components" (HICs) whose spatial patterns of BOLD signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal features of HICs allowed them to be distinguished with high accuracy from other components in a user-independent manner (area under the curve = 0.93, balanced accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore presents a new, noninvasive method for assessing blood flow in acute stroke that minimizes interpretative subjectivity and is robust to severe patient motion

    COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts

    Get PDF
    © 2020 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1162/qss_a_00066The COVID-19 pandemic requires a fast response from researchers to help address biological, medical and public health issues to minimize its impact. In this rapidly evolving context, scholars, professionals and the public may need to quickly identify important new studies. In response, this paper assesses the coverage of scholarly databases and impact indicators during 21 March to 18 April 2020. The rapidly increasing volume of research, is particularly accessible through Dimensions, and less through Scopus, the Web of Science, and PubMed. Google Scholar’s results included many false matches. A few COVID-19 papers from the 21,395 in Dimensions were already highly cited, with substantial news and social media attention. For this topic, in contrast to previous studies, there seems to be a high degree of convergence between articles shared in the social web and citation counts, at least in the short term. In particular, articles that are extensively tweeted on the day first indexed are likely to be highly read and relatively highly cited three weeks later. Researchers needing wide scope literature searches (rather than health focused PubMed or medRxiv searches) should start with Dimensions (or Google Scholar) and can use tweet and Mendeley reader counts as indicators of likely importance
    • 

    corecore